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Abstract
We study completely integrable Hamiltonian systems whose monodromy
matrices are related to the representatives for the set of gauge equivalence
classes MF of polynomial matrices. Let X be the algebraic curve given by
the common characteristic equation for MF . We construct the isomorphism
from the set of representatives to an affine part of the Jacobi variety of X.
This variety corresponds to the invariant manifold of the system, where the
Hamiltonian flow is linearized. As an application, we discuss the algebraic
complete integrability of the extended Lotka–Volterra lattice with a periodic
boundary condition.

PACS numbers: 02.30.Ik, 05.45.−a

1. Introduction

The algebro-geometric structure of the completely integrable Hamiltonian systems was
unveiled around 1980 (see [1–5] and references therein), and has been extensively studied.
It was a remarkable discovery that the Hamiltonian flows of the systems are linearized on
algebraic varieties such as the Jacobi variety J (X) of an algebraic curve X. Many of the
systems are described by the Lax equation for (Laurent) polynomial matrices of a spectral
parameter, and X comes from its fixed characteristic equation which gives the level set of the
Lax matrix. Typically the flows are linearized by the following procedure:

System
(I)−→ Lax matrix (→X)

(II)−→ Diveff(X) (1.1)
(III)−→ J (X)

where Diveff(X) is the set of effective divisors. The arrows (II) and (III) are, respectively,
induced by the eigenvector map and the Abel map. In many cases, the linearization of the
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flows are related to the Lie algebraic symmetry of Lax matrices [5]. On the other hand, in [6]
the condition of the linearization was discussed based on a cohomological interpretation of
the Lax equation.

Roughly speaking, (I) is heuristic, and (II) and (III) are systematic. By the Abel–Jacobi
theorem (III) is understood in general framework, but (II) depends on the Lax matrix very
much. Beauville showed that if we replace the Lax matrix with a set of gauge equivalence
classes of polynomial matrices, (II) becomes an isomorphism [7]. He further proved that over
the tangent space of the set there exists the g-dimensional invariant vector field linearized
on J (X), where g is the genus of X. As claimed in [8], to study concrete integrable systems
we need to choose the orbit which gives the representative of the gauge equivalence class.
In fact, Mumford already gave an important example when X was a hyperelliptic curve [9],
and introduced the set of representatives with the explicit isomorphic maps (II) and (III). The
dynamical system that he introduced is called the Mumford system, and has been studied from
many points of view [10–14]. Recently, Smirnov and Zeitlin constructed the representative
of the wider class of gauge equivalence classes, by starting with N by N monodromy matrices
of some special forms [8, 15]. They constructed the isomorphism (II) by making use of the
separation of variables (SoV) in the style of Sklyanin [16].

In this paper, we consider the extension of [15], and construct the isomorphic map (II)
for a certain class of monodromy matrices. We introduce N by N monodromy matrices
Tm;n1,n2(z)(n1 = 1, . . . , N − 1, n2 = 1, . . . , N), whose entries are polynomials of a spectral
parameter z of degree m. We fix a level set of Tm;n1,n2(z), where the characteristic polynomial
of Tm;n1,n2(z) is fixed to be Fm;n1,n2(z, w) ∈ C[z,w]. We write this set as {Tm;n1,n2(z)}Fm;n1,n2

.
The characteristic equation Fm;n1,n2(z, w) = 0 defines a complete algebraic curve X and the
set of gauge equivalence classes MFm;n1 ,n2

. Let {M(z)}Fm;n1,n2
be the set of representatives of

MFm;n1,n2
. Starting with the level set

{
Tm;n1,n2(z)

}
Fm;n1 ,n2

, we study the following diagram

{
Tm;n1,n2(z)

}
Fm;n1,n2

(b)−→ X(g)

(a) ↓ ↗ (c)

{M(z)}Fm;n1,n2

(1.2)

where X(g) ⊂ Diveff(X) is the set of effective divisors of degree g. The map (a) is the gauge
transformation, (b) is based on SoV and we construct these two so as to make the diagram
(1.2) commutative. In [15], the maps in (1.2) were given for {Tm;1,1(z)}Fm;1,1 for a general N.
We study (1.2) in detail for N = 2 and 3 here.

Next, as an application, we study the integrable Hamiltonian structure of the extended
Lotka–Volterra lattice. This is defined by the differential-difference equation

dVn

dt
= 2Vn

N−1∑
k=1

(Vn+k − Vn−k) (1.3)

where Vn ≡ Vn(t) ∈ C for n ∈ Z. This model has the Hamiltonian structure and a family
of integrals of motion in involution [17–19]. When the model is infinite dimensional, the
N = 2 case is known as the lattice KdV hierarchy [20], and the general N > 2 case is
related to the lattice N-reduced KP hierarchy [21–24]. We set a periodic boundary condition
Vn+L = Vn for L ∈ Z�2N−1, and write LV(N,L) for this finite-dimensional model. In [25]
the algebraic complete integrability of LV(2, L) was shown, based on the analogues of the
Mumford system, and its invariant manifold is associated with an affine part of the Prym
variety. Now, following [26], we study the integrability of LV(N,L) by applying the structure
(1.2). We show that the monodromy matrix of LV(N,L) is related to Tm;n1,n2(z) where the
correspondence L ↔ (m, n1, n2) is determined uniquely, and that the Poisson structure over
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{M(z)}Fm;n1,n2
is nicely embedded in that of LV(N,L). Thus SoV can be used to describe

explicitly the map (c) as algebraic relations between the divisors in X(g) and the dynamical
variables Vn. Finally we give another proof of the algebraic complete integrability for N = 2
case, and establish it for N = 3 case.

Theorem 1.1. LV(N,L) is algebraic completely integrable for L ∈ Z�2N−1, N = 2 and 3.

We believe that it is true for general N.
This paper is arranged as follows: in section 2, after preliminaries we introduce a class

of N by N monodromy matrices Tm;n1,n2(z) which satisfy the fundamental Poisson relation
with the classical r-matrix. By starting with these matrices we explain how to construct the
maps in (1.2). In section 3, we study the N = 2, 3 cases, where the set of representatives
{M(z)}Fm;n1,n2

and the eigenvector map (c) (1.2) are explicitly obtained. In section 4, we discuss
the Hamiltonian structure of LV(N,L) and prove theorem 1.1.

The advantage of our way to investigate LV(N,L) is that we obtain the isomorphic
eigenvector map explicitly written as algebraic relations between the divisor and the dynamical
variables. On the other hand, as discussed in [25], for a model given by homogeneous evolution
equations such as (1.3), the Painlevé analysis [27] becomes a powerful tool to construct the
associated invariant manifold. It may be interesting to study the invariant manifold for
LV(N,L) from these two viewpoints.

2. Representatives for MF and eigenvector map

2.1. Preliminaries

Fix a polynomial F(z,w) of the form

F(z,w) ≡ wN − f1(z)w
N−1 + f2(z)w

N−2 − · · · + (−1)NfN(z) (2.1)

where each polynomial fi(z) satisfies deg fi(z) � im. Let X be the complete algebraic curve
defined by F(z,w) = 0. We assume X is smooth, and let g be its genus. Let MF be the set
of gauge equivalence classes of N by N matrices whose matrix elements are polynomials in z

of degree m ∈ Z>0,

MF = {M(z) | deg(M(z)i,j ) � m for all i, j

Det(w11 − M(z)) = F(z,w)}/GLN(C). (2.2)

For MF Beauville introduced the isomorphism [7]

MF � X(g) − D. (2.3)

Here X(g) is the set of effective divisors X(g) = Xg/Sg ⊂ Diveff(X), Sg is the symmetric
group and D is a subset of X(g). The Abel map induces the isomorphism,

X(g) − D � J (X) − � (2.4)

where D is mapped to a (g−1)-dimensional subvariety � called the theta divisor of the Jacobi
variety J (X).

We call J (X) − � the affine Jacobi variety of X and write Jaff(X) for it. We denote
the set of representatives of MF using {M(z)}F . Due to (2.3) and (2.4) {M(z)}F gives the
matrix realization of Jaff(X). Herewith the arrows (II) and (III) in the procedure (1.1) become
isomorphisms (II′) and (III′),

{M(z)}F (II′)−→ X(g) − D
(2.5)

(III′)−→ Jaff(X).
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In this paper, we let MN(C) be a set of N by N complex matrices, Ei,j be an N by N basic
matrix: (Ei,j )m,n = δm,iδn,j , and 
ei be an N-dimensional row vector: (
ei)m = δm,i .

2.2. Classification of monodromy matrices and MF

We introduce lower/upper triangular N by N matrices,

µ
(i)
− = i+1→




0 · · · · · · 0
...

...

0 · · · · · · 0
∗ ∗ 0 · · · · · · 0
∗ ∗ ∗ 0 · · · · · · 0
...

. . .
. . .

...

∗ · · · · · · · · · ∗ 0 · · · 0




for i = 1, . . . , N − 1

↑N+1−i
(2.6)↓i

µ(i)
+ =




0 · · · 0 ∗ · · · · · · ∗
...

. . . ∗ · · · ∗
...

. . .
. . .

...

0 · · · · · · 0 ∗
0 · · · · · · 0
...

...

0 · · · · · · 0




←N+1−i for i = 1, . . . , N

where i→ (or ↓ i) indicates the ith row (or column) of the matrices, and ∗ denotes non-zero
entries which will be constants or variables. For N � 3 we also use

↓i+2

µ
(−i)
− =




∗ · · · ∗ 0 · · · 0

∗ · · · · · · ∗ . . .
...

...
. . . 0

∗ · · · · · · ∗
∗ · · · · · · ∗
...

...

∗ · · · · · · · · · · · · ∗




←N−1−i for i = 0, . . . , N − 3

(2.7)

µ(−i)
+ = i+2→




∗ · · · · · · · · · · · · ∗
...

...

∗ · · · · · · ∗
∗ · · · · · · ∗
0

. . .
...

...
. . . ∗ · · · · · · ∗

0 · · · 0 ∗ · · · ∗




for i = 0, . . . , N − 3.

↑N−i−1
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We denote by µj (j ∈ Z>0) N by N matrices whose entries are not identically zero. We write(
µ

(i)
− ∩µ

(j)
+

)
for a matrix which has zero at (j1, j2) if

(
µ

(i)
−
)
j1,j2

or
(
µ

(j)
+

)
j1,j2

is zero. Note that(
µ

(i)
− ∩ µj

)
and µ

(i)
− have the same form.

First we fix the matrices (2.6), (2.7) and µj for j = 1, . . . , m−1 to be constant matrices in

MN(C): µ
(i)
− ≡ µ

(i)0
− , µ

(i)
+ ≡ µ

(i)0
+ and µj ≡ µ0

j . Using these matrices we define polynomial
matrices T0

m;n1,n2
(z)(m ∈ Z>0, n1 ∈ {1, 2, . . . , N − 1}, n2 ∈ {1, 2, · · · , N}) as

T0
m;n1,n2

(z) =




µ
(n1)0− zm + µ

(n1−N+1)0
− zm−1 + µ0

2z
m−2 + · · · + µ0

m−2z
2

+ µ
(n2−N)0
+ z + µ

(n2)0
+ for m � 3

µ
(n1)0− z2 +

(
µ

(n1−N+1)0
− ∩ µ

(n2−N)0
+

)
z + µ

(n2)0
+ for m = 2(

µ
(n1)0− ∩ µ

(n2−N)0
+

)
z +

(
µ

(n1−N+1)0
− ∩ µ

(n2)0
+

)
for m = 1.

(2.8)

When µ
(n1−N+1)
− (or µ

(n2−N)
+ ) is not defined by (2.7), set µ

(n1−N+1)
− ≡ µ0

1 (or µ
(n2−N)
+ ≡ µ0

m−1).

Proposition 2.1. The map

Z>0 × {1, 2, . . . , N − 1} × {1, 2, . . . , N} → C[z,w]

(m, n1, n2) �→ Fm;n1,n2(z, w) = Det
(
w11 − T0

m;n1,n2
(z)

)
(2.9)

is injective.

Proof. It is sufficient to check the coefficient of w in the polynomial Fm;n1,n2(z, w) (2.9) for
the injectivity. We write fN−1(z) for this coefficient, as Fm;n1,n2(z, w) (2.9) has a form (2.1).
Note

fN−1(z) = Det T0
m;n1,n2

(z) · Tr
(
T0

m;n1,n2
(z)−1)

and the forms of µ
(n1)
+ and µ

(n2)− which compose T0
m;n1,n2

(z). Then one sees

deg fN−1(z) = (N − 1)m − n1 + 1 ordz=0fN−1(z) = n2 − 1.

Since n1 ∈ {1, . . . , N − 1}, fN−1(z) determines a triple (m, n1, n2). �

Next we set the entries of matrices (2.6), (2.7) and µj for j = 1, . . . , m−1 to be variables,
and define N by N monodromy matrices Tm;n1,n2(z) (m ∈ Z>0, n1 ∈ {1, 2, . . . , N − 1}, n2 ∈
{1, 2, . . . , N}) as in (2.8),

Tm;n1,n2(z) =




µ
(n1)− zm + µ

(n1−N+1)
− zm−1 + µ2z

m−2 + · · · + µm−2z
2

+ µ
(n2−N)
+ z + µ

(n2)
+ for m � 3

µ
(n1)− z2 +

(
µ

(n1−N+1)
− ∩ µ

(n2−N)
+

)
z + µ

(n2)
+ for m = 2(

µ
(n1)− ∩ µ

(n2−N)
+

)
z +

(
µ

(n1−N+1)
− ∩ µ

(n2)
+

)
for m = 1.

(2.10)

To study Tm;n1,n2(z), we define a local Lax matrix as

Ln(z) =
N−1∑
k=1

l(k)
n Ek,k+1 + zl(N)

n EN,1 + zl(0)
n EN,2 (2.11)

where l(k)
n (n ∈ Z, k = 0, . . . , N ) are dynamical variables.

Lemma 2.2. With the Lax matrix Ln(z) (2.11) the following Poisson relation is compatible,

{Ln(z)
⊗, Lm(z′)} = δn,m[r(z/z′), Ln(z) ⊗ Ln(z

′)] (2.12)
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where r(z) is the classical r-matrix

r(z) = z + 1

z − 1

N∑
k=1

Ek,k ⊗ Ek,k +
2

z − 1

∑
1�j<k�N

(zEk,j ⊗ Ej,k + Ej,k ⊗ Ek,j ). (2.13)

Proof. It is shown by a direct calculation. One easily sees that (2.12) is consistent with the
Poisson bracket algebra for l(k)

n (k = 0, . . . , N) defined as{
l(k)
n , l(j)

m

} = 0 for 1 � k, j � N{
l(0)
n , l(k)

m

} = δn,m(δk,N − δk,1)l
(0)
n l(k)

n .

�

We define integers m,m1 and m2 by

m =
[

L

N(N − 1)

]
m1 =

[
L

N − 1

]
m2 =

[
L

N

]
(2.14)

and determine k, k1 and k2 using

L = (N − 1)m1 + k1 = Nm2 + k2 = N(N − 1)m + k. (2.15)

Lemma 2.3. The monodromy matrix Tm;n1,n2(z) (2.10) can be written as a product of L Lax
matrices Ln(z) (2.11),

z−m2

L∏
n=1

Ln(z) =



Tm;1,1(z) for k1 = k2 = 0
Tm+1;N−k1,k2+1(z) for k1, k2 �= 0 0 � k1 − k2 � N − 2
Tm+2;N−k1,k2+1(z) for k1 − k2 � −1

(2.16)

where integers m,m2, k1 and k2 are defined in (2.14) and (2.15).

See appendix A for the proof. Due to lemmas 2.2 and 2.3, it is straightforward to obtain the
following proposition.

Proposition 2.4. With the matrix Tm;n1,n2(z) the fundamental Poisson relation is compatible,{
Tm;n1,n2(z)

⊗, Tm;n1,n2(z
′)
} = [

r(z/z′), Tm;n1,n2(z) ⊗ Tm;n1,n2(z
′)
]
. (2.17)

Let AC be the Poisson bracket algebra over the polynomial ring generated by the
coefficients of entries in Tm;n1,n2(z), whose defining relation is (2.17). Then (2.17) implies

Proposition 2.5 [28].(i) The determinant of Tm;n1,n2(z) belongs to the centre of AC ,{
Tm;n1,n2(z), Det Tm;n1,n2(z

′)
} = 0.

(ii) The coefficients of the characteristic polynomial of Tm;n1,n2(z) are Poisson commutative,

{Det(w11 − Tm;n1,n2(z)), Det(w′11 − Tm;n1,n2(z
′))} = 0.

Using (2.9) we define the level set of Tm;n1,n2(z) as{
Tm;n1,n2(z)

}
Fm;n1,n2

= {
Tm;n1,n2(z)

∣∣Det(w11 − Tm;n1,n2(z)) = Fm;n1,n2(z, w)
}
.

Let X be the complete algebraic curve determined by Fm;n1,n2(z, w) = 0, and its genus
be g. We consider the cases of g � 1. In general

{
Tm;n1,n2(z)

}
Fm;n1,n2

constitutes a variety

whose dimension is greater than g. Since the isomorphism (2.3) implies that MFm;n1,n2
is a

g-dimensional variety, we state a problem to construct the map (a) (1.2) which gives the set of
representatives {M(z)}Fm;n1,n2

as follows:
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Problem 2.6. For Tm;n1,n2(z) find a gauge matrix S on Tm;n1,n2(z), such that the set

{M(z)}Fm;n1,n2
= {M(z) = STm;n1,n2(z)S

−1 | Det(w11 − M(z)) = Fm;n1,n2(z, w)} (2.18)

constitutes a g-dimensional variety.

We note that the matrix M(z) has the same degree as Tm;n1,n2(z) as a polynomial matrix, and
write it as

M(z) = η0z
m + η1z

m−1 + · · · + ηm−1z + ηm. (2.19)

Here the variable matrices ηi do not depend on z. Once the above problem is solved, the
Poisson bracket algebra generated by the matrix elements of ηi (2.19) is induced by AC , and
we let AM be this algebra. Due to proposition 2.5, the coefficients of Det

(
w11 − Tm;n1,n2(z)

)
constitute the commuting subalgebra of AM .

In what follows, we abbreviate the polynomial Fm;n1,n2(z, w) to F(z,w), and the subscript
Fm;n1 ,n2

to F .

2.3. Eigenvector map and SoV

Following [8, 15] we introduce the eigenvector map (b) (1.2) by making use of SoV. Sklyanin
refined the technique invented to solve the spectral problem of the quantum Toda lattice,
and introduced the method called SoV based on the R-matrix structure of the monodromy
matrices (see [16, 29] and references therein). The SoV for the monodromy matrices of
SL(N) symmetry has been studied in detail. The cases of N = 2 and 3 are done by Sklyanin
himself [29, 30], and the extension to the general N cases are clarified in [31, 32].

For classical systems this method derives the canonically conjugate variables from the
poles of the eigenvector of the monodromy matrix. We review this mechanism following [16].
Let T(z) be an N by N monodromy matrix which satisfies the fundamental Poisson relation as
(2.17). Then the eigenvector of T(z) called the Baker–Akhiezer function is defined as

T(z) 
φ(z) = w 
φ(z)

N∑
n=1

an(z)φn(z) = 1

where 
φ(z) = (φ1(z), . . . , φN(z)), and w is the eigenvalue. The second equation is a
normalization which uniquely determines 
φ(z). When 
φ(z) has a pole at z = zi , the residues

φi = (φ1,i , . . . , φN,i) = resz=zi


φ(z) satisfy

T(zi) 
φi = wi

φi

N∑
n=1

an(zi)φn,i = 0. (2.20)

Then the condition to get non-zero vector 
φi becomes

Det




a1(z) a2(z) · · · aN(z)

T (z)1,1 − w T (z)1,2 · · · T (z)1,N

...

T (z)j−1,1 T (z)j−1,2 · · · T (z)j−1,N

T (z)j+1,1 T (z)j+1,2 · · · T (z)j+1,N

...

T (z)N,1 T (z)N,2 · · · T (z)N,N − w




= 0 for j = 1, . . . N (2.21)

where T (z)i,j = (T(z))i,j .
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In our case with the monodromy matrix Tm;n1,n2(z) (2.10), some simple choices of the
vector 
a(z) = (a1(z), . . . , aN(z)) give SoV, and (2.21) reduces to two equations on Tm;n1,n2(z),

B(z) = 0 w = A(z). (2.22)

Here A(z) = A
(
Tm;n1,n2(z)

)
is a rational function of z, and B(z) = B

(
Tm;n1,n2(z)

)
is a

polynomial. Accordingly a zero zi of B(z) uniquely determines the eigenvalue wi = A(zi).
The significant benefit of the fundamental Poisson relation (2.17) is that the variables (zi, wi)

turn out to be canonically conjugate variables, namely they fulfil the canonical Poisson
brackets,

{zi, zj } = {wi,wj } = 0 {zi, wj } = 2δi,j ziwi.

These variables are called the separated variables, and the equation B(z) = 0 (2.22) is called
the separation equation.

When we consider the level set
{
Tm;n1,n2(z)

}
F

, each pair (zi, wi) satisfies F(zi, wi) = 0.
We expect that the separation equation has a following form,

B(z) = B0z
f (n1,n2)

g∏
i=1

(z − zi) f (n1, n2) ∈ Z�0 (2.23)

where g is the genus of the algebraic curve X given by F(z,w) = 0. There are certainly some
different choices of the separation equations (2.22) depending on the vector 
a(z). To make
the diagram (1.2) commutative, we should choose the separation equation invariant under the
gauge S (2.18).

To close this section, we mention the subset D which appeared in the isomorphism (2.4).
We assume (zi, wi) �= (zj , wj ) for i �= j , and a set of the g-separated variables (zi, wi)

determine an effective divisor

P =
g∑

i=1

[(zi, wi)] ∈ X(g). (2.24)

Then the subset D should be set as [15]

D =
{

P =
g∑

i=1

[(zi, wi)] | Det(hi(zj , wj ))1�i,j�g = 0

}
(2.25)

where hi(z,w) are defined by homomorphic 1-forms σi on X [33],

σi(z, w) = hi(z,w) dz
∂

∂w
F (z,w)

for i = 1, . . . , g. (2.26)

We remark that the g independent vector fields on a tangent space of MF are generated by
the coefficients of F(z,w) (2.9). The fundamental Poisson relation (2.17) ensures that the
evolution of the divisor P generated by the vector fields is linearized on Jaff(X).

3. Study of concrete cases

Starting with Tm;n1,n2(z), we study the diagram (1.2). We construct the gauge matrix S (2.18)
which gives the set of representatives {M(z)}F , and the associated separation equation which
makes the map (c) (1.2) well defined. Then the isomorphic eigenvector map (II′) (2.5) is
induced by (c). We explicitly discuss the cases of N = 2 and 3 with g � 1. Further we recall
{M(z)}F associated with Tm;1,1(z) for general N [15, 26].
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3.1. N = 2 case

We have matrices (2.6)

µ
(1)
− =

(
0 0
∗ ∗

)
µ(1)

+ =
(∗ ∗

0 ∗
)

µ(2)
+ =

(
0 ∗
0 0

)
.

Using them we introduce two matrices, Tm;1,1(z) and Tm;1,2(z), and derive the associated
representatives:

(i) Tm;1,1(z). We have the matrix

Tm;1,1(z) = µ
(1)
− zm + µ1z

m−1 + · · · + µm−1z + µ(1)
+ for m � 2. (3.1)

The spectral curve X is given by

F(z,w) = Det
(
w11 − T0

m;1,1(z)
) = w2 − wf1(z) + f2(z) = 0

(3.2)
where deg f1(z) = m degf2(z) = 2m − 1

and its genus is g = m − 1. The set {M(z)}F (2.18) is obtained as the level set of

M(z) = STm;1,1(z)S−1 S =
( 
e1


e1µ1

)
(3.3)

where M(z) has the form

M(z) = η0z
m + · · · + ηm where η0 =

(
0 0
∗ ∗

)
η1 =

(
0 1
∗ ∗

)
and other ηi are matrices without zero entries.

(ii) Tm;1,2(z). This is the case with the matrix

Tm;1,2(z) = µ
(1)
− zm + µ1z

m−1 + · · · + µm−1z + µ(2)
+ for m � 2

and X is determined by

F(z,w) = Det
(
w11 − T0

m;1,2(z)
) = w2 − wzf ′

1(z) + zf ′
2(z) = 0

(3.4)
where deg f ′

1(z) = m − 1 deg f ′
2(z) = 2m − 2.

The genus of X is m − 1. By using the gauge matrix

S =
(
e2µ

(1)
−


e2

)
(3.5)

we obtain M(z) (2.19) with

η0 =
(∗ 0

1 0

)
ηm =

(
0 ∗
0 0

)
and the other ηi are the matrices with no zero entries.

One sees that both of {Tm;1,1(z)}F and {Tm;1,2(z)}F constitute the algebraic varieties of
dimension m which is not equal to the genus of X. For example, by the definition (3.1) one
sees that Tm;1,1(z) has (4m + 1) variables to which the fixed characteristic equation (3.2) gives
3m + 1 relations. Then we see {Tm;1,1(z)}F constitutes the m-dimensional algebraic variety.
The gauge matrix S reduces {Tm;1,1(z)}F by one dimension, and {M(z)}F becomes (m − 1)

dimensional. After choosing the vector 
a(z) = (a1(z), a2(z)) (2.20) the separation equation
(2.22) is obtained as

B(z) =
{

T (z)1,2 = B0
∏m−1

i=1 (z − zi) 
a(z) = (1, 0) for (i)

T (z)2,1 = B0z
∏m−1

i=1 (z − zi) 
a(z) = (0, 1) for (ii)
(3.6)
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where T (z)i,j = (
Tm;n1,n2(z)

)
i,j

. In both cases B(z) generally has m − 1 non-zero roots:
z1, . . . , zm−1, and each of them gives an eigenvalue

wi =
{
T (zi)2,2 for (i)
T (zi)1,1 for (ii).

In the level set
{
Tm;n1,n2(z)

}
F

the points (zi, wi) on X determine the effective divisor over X,

P =
m−1∑
i=1

[(zi, wi)] ∈ X(g) − D.

We remark that this divisor is invariant under the gauge transformation induced by S, namely
the solution of the separation equation does not change after replacing each T (z)i,j with a
matrix element of M(z); M(z)i,j . In this case X is linearly transformed to the hyperelliptic
curve, and we can easily see the structure of D [9]. On the curve X, we have two infinity points
∞± and m − 1 homomorphic 1-forms (2.26)

hi(z,w) = zi−1 for i = 1, . . . , m − 1.

Then D is written as [34]

D =
{

P =
m−1∑
i=1

[(zi, wi)] | zi = zj for some i �= j, or (zi, wi) = ∞±for some i

}
.

3.2. N = 3 case

The matrices (2.6) and (2.7) are written as

µ
(1)
− =


0 0 0

∗ ∗ 0
∗ ∗ ∗


 µ

(2)
− =


0 0 0

0 0 0
∗ ∗ 0


 µ

(0)
− =


∗ ∗ 0

∗ ∗ ∗
∗ ∗ ∗




µ(1)
+ =


∗ ∗ ∗

0 ∗ ∗
0 0 ∗


 µ(2)

+ =

0 ∗ ∗

0 0 ∗
0 0 0


 µ(3)

+ =

0 0 ∗

0 0 0
0 0 0




µ(0)
+ =


∗ ∗ ∗

∗ ∗ ∗
0 ∗ ∗


 .

We study six cases for Tm;n1,n2(z), n1 = 1, 2 and n2 = 1, 2, 3. For each Tm;n1,n2(z) we
enumerate the forms of the spectral curve F(z,w) given by T0

m;n1,n2
(z), the gauge matrix S

and the matrix M(z) (2.18). In the following, unless a concrete form is shown, ηi (2.19)
denote the matrices without zero entries.

(i) Tm;1,1(z). We start with the matrix

Tm;1,1(z) = zmµ
(1)
− + zm−1µ1 + · · · + zµm−1 + µ(1)

+

whose characteristic polynomial is given by T0
m;1,1(z) as

F(z,w) = w3 − f1(z)w
2 + f2(z)w − f3(z) (3.7)

where deg f1(z) = m, deg f2(z) = 2m and deg f3(z) = 3m − 1. The genus of the curve
X is g = 3m − 2. The gauge matrix

S =

 
e1


e1µ1µ
(1)
−


e1µ1



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introduces (2.19) of the form

M(z) = zm


0 0 0

∗ ∗ ∗
0 1 0


 + zm−1


0 0 1

∗ ∗ ∗
∗ ∗ ∗


 + O(zm−2).

(ii) Tm;2,2(z). The matrix is

Tm;2,2(z) = zmµ
(2)
− + zm−1µ

(0)
− + zm−2µ2 + · · · + zµm−1 + µ(2)

+ for m � 2

and X is given by T0
m;2,2(z),

F(z,w) = w3 − zf ′
1(z)w

2 + zf ′
2(z)w − zf ′

3(z) (3.8)

where deg f ′
1(z) = m − 2, deg f ′

2(z) = 2m − 2 and deg f ′
3(z) = 3m − 3. The genus is

g = 3m − 3. With the gauge matrix

S =


 
e3µ

(2)
−


e3µ
(2)
− µ

(2)
+


e3




(2.19) is obtained as

M(z) = zm


0 0 0

∗ 0 0
1 0 0


 + · · · +


0 1 0

0 0 ∗
0 0 0


 .

(iii) Tm;1,3(z). For the matrix

Tm;1,3(z) = zmµ
(1)
− + zm−1µ1 + · · · + zµ(0)

+ + µ(3)
+ for m � 2

X is given by

F(z,w) = w3 − zf ′
1(z)w

2 + z2f ′
2(z)w − z2f ′

3(z) (3.9)

where deg f ′
1(z) = m − 1, deg f ′

2(z) = 2m − 2 and deg f ′
3(z) = 3m − 3. The genus of X

is g = 3m − 3. The gauge

S =





e1


e1µ
(3)
+ µ

(0)
+


e1µ
(3)
+




gives (2.19),

M(z) = zm


0 0 0

∗ ∗ ∗
∗ ∗ ∗


 + · · · + z


∗ ∗ ∗

∗ ∗ ∗
0 1 0


 +


0 0 1

0 0 0
0 0 0


 .

(iv) Tm;2,1(z). The matrix is

Tm;2,1(z) = zmµ
(2)
− + zm−1µ

(0)
− + zm−2µ2 + · · · + zµm−1 + µ(1)

+ for m � 2

and X is given by (3.7) with deg f1(z) = m − 1, deg f2(z) = 2m − 1 and deg f3(z) =
3m − 2. The genus of X is g = 3m − 3. The gauge matrix and the matrix (2.19) are

S =


 
e3µ

(2)
−


e3µ
(2)
− µ

(1)
+


e3


 M(z) = zm


0 0 0

∗ 0 0
1 0 0


 + · · · +


0 1 0

∗ ∗ ∗
0 0 ∗


 .
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(v) Tm;1,2(z). The matrix

Tm;1,2(z) = zmµ
(1)
− + zm−1µ1 + · · · + zµm−1 + µ(2)

+

has the spectral curve (3.8) with deg f ′
1(z) = m − 1, deg f ′

2(z) = 2m − 1 and
deg f ′

3(z) = 3m − 2, whose genus is 3m − 2. The gauge matrix and the matrix (2.19) are

S =





e1


e1
(
µ

(2)
+

)2


e1µ
(2)
+


 M(z) = zm


0 0 0

∗ ∗ ∗
∗ ∗ ∗


 + · · · +


0 0 1

0 0 0
0 1 0


 .

(vi) Tm;2,3(z). When m � 3, the matrix is defined as

Tm;2,3(z) = zmµ
(2)
− + zm−1µ

(0)
− + zm−2µ2 + · · · + z2µm−2 + zµ(0)

+ + µ(3)
+ .

Its spectral curve is given by (3.9) with deg f ′
1(z) = m − 2, deg f ′

2(z) = 2m − 3 and
deg f ′

3(z) = 3m − 4, and the genus is 3m − 4. The gauge matrix and the matrix (2.19)
are obtained as

S =


 
e3µ

(0)
+


e3µ
(0)
+ µ

(2)
−


e3


 M(z) = zm


0 1 0

0 0 0
0 ∗ 0


 + · · · + z


∗ ∗ ∗

∗ ∗ ∗
1 0 0


+


0 0 0

0 0 ∗
0 0 0


 .

(3.10)

For the case of m = 2, we have

T2;2,3(z) = z2µ
(2)
− + z

(
µ

(0)
− ∩ µ(0)

+

)
+ µ(3)

+ where
(
µ

(0)
− ∩ µ(0)

+

) =

∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗


 .

Following this form, the gauge becomes

S =





e3
(
µ

(0)
− ∩ µ

(0)
+

)

e3
(
µ

(0)
− ∩ µ

(0)
+

)
µ

(2)
−


e3


 .

The associated characteristic polynomial and the matrix (2.19) are obtained by substituting
m = 2 in (3.9) and (3.10).

We construct the set of representatives {M(z)}F (2.18) based on F(z,w) and M(z) for
each case. One sees that in all cases the gauge matrices S reduce the dimension of the variety{
Tm;n1,n2(z)

}
F

by two. The separation equation differs depending on which of 
e1 and 
e3 the
gauge matrix S includes. For the cases of (i), (iii) and (v), we have the invariant separation
equation (2.22)

B(z) = Det




(T (z)1,2, T (z)1,3)

(T (z)1,2, T (z)1,3)

(
T (z)2,2 T (z)2,3

T (z)3,2 T (z)3,3

)

 = 0 where 
a = (1, 0, 0)

and for the rest of the cases,

B(z) = Det




(T (z)3,1, T (z)3,2)

(T (z)3,1, T (z)3,2)

(
T (z)1,1 T (z)1,2

T (z)2,1 T (z)2,2

)

 = 0 where 
a = (0, 0, 1).
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In all cases B(z) has a form as (2.23), and each of them gives the eigenvalue by

wi =




Det

(
T (zi)1,2 T (zi)1,3

T (zi)3,2 T (zi)3,3

)/
T (zi)1,2 for (i), (iii), (v)

Det

(
T (zi)1,1 T (zi)1,2

T (zi)3,1 T (zi)3,2

)/
T (zi)3,2 for (ii), (iv), (vi).

In conclusion, the separation equation uniquely determines the effective divisor P ∈ X(g)−D

which is invariant under the gauge S.

3.3. General N cases

In the case of general N�4, we have N(N − 1) kinds of monodromy matrices Tm;n1,n2(z).
When n1 = n2 = 1, the spectral curve X is given by (2.1) where deg fi(z) = im, for
i = 1, . . . , N − 1, and fN(z) = Nm − 1. Then the genus is g = 1

2 (N − 1)(Nm − 2). For
each Tm;1,1(z) we have a gauge matrix [15];

S =





e1


e1µ1(µ
(1)
− )N−2

...


e1µ1µ
(1)
−


e1µ1




(3.11)

which reduces the variety of {Tm;1,1(z)}F by N − 1 dimensions. Using the elements of
Tm;1,1(z) given by

Tm;1,1(z) =
(

a(z) 
b(z)


c(z)T d(z)

)
the separation equation is defined as [31, 32]

B(z) ≡ Det





b(z)


b(z) d(z)


b(z) d(z)2

...


b(z) d(z)N−2




.

Then B(z) becomes a polynomial of z of degree g, and the zeros of B(z) is invariant under
the gauge transformation induced by S [32].

Instead of showing other cases, based on the above concrete studies, we introduce the
conjecture for S as follows:

Conjecture 3.1. For Tm;n1,n2(z) (2.10) there is a gauge matrix S (2.18) of the form

S =





e1


e1µaµ
N−2
b

...


e1µaµb


e1µa




for even L





eNµa


eNµaµb

...


eNµaµ
N−2
b


eN




for odd L (3.12)

where µa, µb ∈ {
µ

(n1)− , µ
(n1−N+1)
− , µ

(n2)
+ , µ

(n2−N)
+ , µj , j = 2, . . . , m − 2

}
, such that S reduces

{Tm;n1,n2(z)}F to a g-dimensional variety {M(z)}F (2.18) and that the associated separation
equation (2.22) of the form (2.23) has zeros invariant under S.
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We briefly remark on the diagram (1.2). If we get the gauge matrix S which solves
problem 2.6 then (a) becomes surjective, since {M(z)}F is the set of representatives. Therefore
there exists a map (c) which makes the diagram (1.2) commutative.

4. Integrability of LV(N, L)

4.1. Spectral curve and Poisson structure for LV(N,L)

We introduce the N by N Lax matrix for the extended Lotka–Volterra lattice (1.3) as

L̃n(z) = 1

zV
N−1
N

n

(
N−1∑
k=1

VnEk,k+1 + zN(−1)N−1EN,1 + zN(−1)N−2EN,2

)
. (4.1)

We have modified the original Lax matrix [17], and (4.1) comes from Ln(z) in [26]. Note
that L̃n(z) has been normalized so that Det L̃n(z) = 1. The monodromy matrix T̃(z) of an
L-periodic model LV(N,L) is defined as

T̃(z) =
L

�∏
k=1

L̃k(z). (4.2)

The characteristic equation of T̃(z),

Det(w11 − T̃(z)) = 0 (4.3)

gives an algebraic curve X̃. For this equation we have the automorphism τ of order N,

τ : (z, w) �→ (εz, ε−k2w)

where ε = e
2π i
N , and k2 is defined by (2.15). We define the matrix TLV(z),

TLV(z) ≡ z
k2
N T̃

(
z

1
N

)
(4.4)

then its matrix elements become polynomials of z and Det TLV(z) = zk2 . The characteristic
equation of TLV(z) gives the quotient curve X̃/τ .

On the other hand, the Hamiltonian structure of LV(N,L) is defined by the Poisson
brackets [17]

{Vn, Vm} = 2VnVm

N−1∑
k=1

(δm,n+k − δm,n−k) (4.5)

and the Hamiltonian H1 = ∑L
n=1 Vn. Using these settings, the time evolution (1.3) is given by

∂Vn

∂t1
= {Vn,H1}

with t = t1. We let ALV be the Poisson bracket algebra for C[Vn; n ∈ Z/LZ] whose defining
relations are given by (4.5). We have the centre of ALV denoted by A0

LV as follows:

Proposition 4.1. The centre A0
LV is generated by the variables

P(i)
k =

L
k
−1∏

n=0

(Vkn+i ) for k ∈ K i ∈ {1, . . . , k} (4.6)

where

K = {k ∈ {1, . . . , N} | k|N or k|(N − 1)} � {k | k|L}. (4.7)
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Here k|L means that L is a multiple of k.

See appendix B for the proof. Since the set
{
P(i)

k

∣∣i ∈ {1, . . . , k}} is generated by{
P(j)

k′
∣∣j ∈ {1, . . . , k′}} for k|k′, to generate A0

LV it is enough to have a set{
P(i)

k

∣∣ k ∈ K0, i ∈ {1, . . . , k}}
where K0 = {max[k ∈ K for k|N ], max[k ∈ K for k|(N − 1)]}. Then the number of
independent generators of A0

LV is

n0 =
∑
k∈K0

k − (|K0| − 1). (4.8)

Based on the structure of the monodromy matrix (4.2), we introduce a variable

P0 ≡
L∏

n=1

(Vn)
− 1

N = (
P(1)

1

)− 1
N

that Poisson commutes with every Vn. Therefore ALV is naturally extended to the Poisson
bracket algebra over C(P0, Vn; n ∈ Z/LZ). We denote this algebra by A′

LV.
A family of the integrals of motion (IM) for LV(N,L) which includes the Hamiltonian

H1 appears as coefficients of the characteristic equation (4.3).

Proposition 4.2 [19, 35]. The IM is a commuting subalgebra of A′
LV.

Proof. We show the outline of the proof. We introduce the variable transformation

Vn = (PnPn+1 · · ·Pn+N−1)
−1Q−1

n Qn+N−1

where Pn,Qn are canonical variables,

{Pn,Qm} = δn,mPnQn {Pn, Pm} = {Qn,Qm} = 0. (4.9)

Then the matrix TLV(z) is transformed into TC(z) by using a diagonal matrix B1 =
B1(P1, . . . , PN−1,Q1, . . . ,QN−1)

TC(z) = B1TLV(z)(B1)
−1 (4.10)

which satisfies the fundamental Poisson relation (2.17)

{TC(z) ⊗, TC(z′)} = [r(z/z′), TC(z) ⊗ TC(z′)] (4.11)

with the r-matrix (2.13). See [26, 35] for details of the matrices B1 and TC(z). Note that
the characteristic equation for the matrix TC(z) is obtained from (4.3) by a transformation

(z, w) �→ (
z

1
N , wz

k2
N

)
, and that the coefficients of the characteristic polynomial belong to

C[P0, Vn; n ∈ Z]. Then the proposition follows. �

We introduce a grading on ALV as deg Vn = 1. Since the IM are obtained as homogeneous
polynomials of Vn, we can identify each of IM based on the grading. For instance, for the
Hamiltonian H1 we have deg H1 = 1. Let nH be the number of the elements of IM in ALV.
By putting the IM in the order of the grading, we obtain

H1,H2, . . . , HnH
. (4.12)

The proposition 4.2 yields

Corollary 4.3. The family of IM generates nH commuting flows for LV(N,L) defined as

∂O
∂ti

≡ {O,Hi} for O ∈ A′
LV i = 1, . . . , nH . (4.13)
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We comment that in [18] the Hamiltonian structure of LV(N,L) is studied by applying
the r-matrix method [5] to the big L by L Lax matrix, and the involution of IM is clarified
by this approach. Since our aim here is to establish the eigenvector map for LV(N,L) based
on the monodromy matrix (2.17), it is important to get the small N by N monodromy matrix
with the fundamental Poisson relation (4.11).

4.2. Realization of MF (z) and the integrable structure of LV(N,L)

We find that the matrix TC(z) (4.10) gives a realization of Tm;n1,n2(z) (2.10), namely both
the form and the Poisson structure of TC(z) coincide with those of Tm;n1,n2(z). We obtain a
similar relation as (2.16) as follows:

Proposition 4.4. Under a condition

Det Tm;n1,n2(z) = zn2−1 (4.14)

TC(z) realizes Tm;n1,n2(z) and they are related as

TC(z) =



Tm;1,1(z) for k1 = k2 = 0
Tm+1;N−k1,k2+1(z) for k1, k2 �= 0 0 � k1 − k2 � N − 2
Tm+2;N−k1,k2+1(z) for k1 − k2 � −1.

(4.15)

Proof. First we check the coincidence of the form. Note that the condition (4.14) comes from
the normalization of L̃n(z). The Lax matrices z

1
N L̃n(z

1
N ) (4.1) and Ln(z) (2.11) have the same

form as polynomial matrices. Then we see that TLV(z) (4.4) and z− L
N

+ k2
N

+m2 T(L)(z) (A.1) have
the same form. Since the gauge B1 (4.10) is diagonal and does not change the form of TLV(z),
we obtain the correspondence of TC(z) = B1TLV(z)B−1

1 and T(L)(z). By using lemma 2.3
and the relation L = Nm2 + k2 (2.15), we obtain (4.15).

Next, we observe the Poisson structure. The conditions (4.14) and (2.17) do not contradict
each other, since proposition 2.5 says that Det Tm;n1,n2(z) belongs to the centre of AC . Then
from (2.17) and (4.11), the monodromy matrices TC(z) obviously have the same Poisson
structure as that of Tm;n1,n2(z). �

Once we associate TC(z) with Tm;n1,n2(z), TC(z) realizes
{
Tm;n1,n2(z)

}
F

where T0
m;n1,n2

(z)

corresponds to the initial condition for TC(z). We also see X̃/τ � X.
In the following we discuss the integrability of LV(N,L) based on the representative

{M(z)}F (2.18) and the Poisson bracket algebra AM realized by LV(N,L). We introduce an
important proposition:

Proposition 4.5. If the gauge matrix S which meets the conditions in conjecture 3.1 exists,
then (i) AM ⊂ A′

LV′ (ii) the separation equation (2.22) gives g algebraic relations between
zi(i = 1, . . . , g) and Vn(n ∈ Z/LZ).

Recall that the matrix TC(z) is no longer written in terms of the dynamical variables of
LV(N,L), but of the canonical variables (4.9). Therefore AM ⊂ AC is trivial but the claim
(i) in the above proposition is not. This claim was conjectured in [26] and now is proved in a
simple way. We add the proof of proposition 4.5 in appendix C.

On the tangent space of MF there is the g-dimensional invariant vector field which
induces the evolution of the divisor P (2.24) linearized on Jaff(X). When nH is equal to g, we
can identify the coordinates on Jaff(X) with the times ti (4.13), and get zi as a functions of ti ;
zi = zi(t1, . . . , tg). Further, if nH = 1

2 (L − n0) is satisfied, we can reduce the integrability of
LV(N,L) to L independent algebraic relations between the dynamical variables of LV(N,L)
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and Hi (4.12), zi (2.22) and n0 generators of A0
LV (4.8). We summarize the integrability of

LV(N,L) as follows:

Proposition 4.6. LV(N,L) is algebraic completely integrable if

g = nH = 1
2 (L − n0) (4.16)

and proposition 4.5 is satisfied.

In section 3, we solved problem 2.6 for the cases of N = 2, 3 and the special case
of general N. We obtained the gauge matrices S (2.18) which satisfy conjecture 3.1, then
proposition 4.5 is satisfied for these cases. The last case corresponds to LV(N,L) with
the special periodicity L = N(N − 1)m studied in [26] where (4.16) was proved and
proposition 4.5 was conjectured. Having proved proposition 4.5, we can now conclude
that

Theorem 4.7. LV(N,N(N − 1)m) is algebraic completely integrable.

In the following, we investigate propositions 4.5 and 4.6 for the results in section 3 and show
theorem 1.1.

4.3. LV(2, L)

Depending on the periodicity L we have two cases:

(i) L = 2m, TC(z) = Tm;1,1(z). The IM are obtained as the coefficients of (3.2) with

f1(z) = P0
(
zm + H1z

m−1 + H2z
m−2 − · · · + zHm−1 +

(
P(1)

2 + P(2)
2

))
.

Here we have m − 1 independent IM identified by their degree, deg Hi = i. The centre
A0

LV is generated by two of P(1)
1 ,P(1)

2 and P(2)
2 . The genus of X is equal to nH .

(ii) L = 2m + 1, TC(z) = Tm+1;1,2(z). We have m independent IM given by (3.4) with

f ′
1(z) = P0(z

m − H1z
m−1 + H2z

m−2 − · · · + (−)mHm)

where deg Hi = i. The centre A0
LV is generated by P(1)

1 only.

In both cases (4.16) is satisfied and the gauge matrices S (3.3) and (3.5) fulfil
proposition 4.5. Therefore we conclude that LV(2, L) is algebraic completely integrable.
The correspondence of the periodicity L and the genus g is summarized as

L 3 4 5 6 7 8 . . . 2m 2m + 1 . . .

g 1 1 2 2 3 3 . . . m − 1 m . . .
.

4.4. LV(3, L)

The periodicity L is classified into six cases.

(i) L = 6m, TC(z) = Tm;1,1(z). The IM are obtained as

f1(z) = P2
0 (f3mzm + f3m+1z

m−1 + · · · + f4m)

f2(z) = P0(z
2m + f1z

2m−1 + · · · + f2m)

where we set fi so as to accomplish deg fi = i. The generators of A0
LV have the ordering

as degP(i)
2 = 3m, degP(i)

3 = 2m, then f3m, f4m and f2m belong to A0
LV. Actually, we

have relations

z2 + f3mz + P(1)
1 = (

z − P(1)
2

)(
z − P(2)

2

)
(4.17)
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z3 + z2f2m + zf4m + P(1)
1 = (

z − P(1)
3

)(
z − P(2)

3

)(
z − P(1)

3

)
. (4.18)

In conclusion we have nH = 3m − 2 which is equal to g, and n0 = 4.
(ii) L = 6m + 1, TC(z) = Tm+1;2,2(z). We have

f ′
1(z) = P2

0 (f3m+1z
m−1 + f3m+2z

m−2 + · · · + f4m)

f ′
2(z) = P0(z

2m + f1z
2m−1 + · · · + f2m).

In this case we have only a generator of A0
LV;P(1)

1 , and no fi belongs to A0
LV. Then

nH = 3m and n0 = 1.
(iii) L = 6m + 2, TC(z) = Tm+1;1,3(z).

f ′
1(z) = P2

0 (f3m+1z
m−1 + f3m+2z

m−2 + · · · + f4m+1)

f ′
2(z) = P0(z

2m + f1z
2m−1 + · · · + f2m).

Since degP(i)
2 = 3m + 1, we see f3m+1 ∈ A0

LV, which satisfies a relation similar to (4.17).
Then we have nH = 3m and n0 = 2.

(iv) L = 6m + 3, TC(z) = Tm+1;2,1(z).

f1(z) = P2
0 (f3m+2z

m + f3m+2z
m−1 + · · · + f4m+2)

f2(z) = P0(z
2m+1 + f1z

2m + · · · + f2m+1).

Since degP(i)
2 = 2m + 1, we see f4m+2, f2m+1 ∈ A0

LV, which satisfy a relation similar to
(4.18). Then we have nH = 3m and n0 = 3.
The remaining cases,

(v) L = 6m + 4, TC(z) = Tm+1;1,2(z)

(vi) L = 6m + 5, TC(z) = Tm+2;2,3(z)

permit the same analysis.

For all L we have nH and n0 which satisfy (4.16). Recall that in section 3.2 we have
constructed the {M(z)}F with the gauge matrices S which meet proposition 4.5. Herewith
we prove the algebraic complete integrability of LV(3, L). As same as the N = 2 case, we
summarize the correspondence of L and g:

L 5 6 7 8 9 10 . . . 6m 6m + 1 6m + 2 6m + 3 6m + 4 6m + 5

g 2 1 3 3 3 4 . . . 3m − 2 3m 3m 3m 3m + 1 3m + 2
.
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Appendix A

Proof of lemma 2.3. We show the outline of the proof. We use the integers defined at (2.14)
and (2.15), and set a matrix T(L)(z),

T(L)(z) = z−m2

L∏
n=1

Ln(z). (A.1)
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By definition, first we have

T(1)(z) = L1(z) = µ
(N−1)
− z +

(
µ

(0)
− ∩ µ(2)

+

)
.

Therefore we obtain the correspondence T(1)(z) = T1;N−1,2. Assume T(L)(z) = Tm;n1,n2(z).
When we set T(L)(z) = (

t
(L)
i,j

)
1�i,j�N

, T(L+1)(z) are related to T(L)(z) as

T(L+1)(z) =



∑N

j=1

(∑N−1
i=1 Ei,j l

(L+1)
i t

(L)
i+1,j + zEN,j

(
l
(L+1)
N t

(L)
1,j + l

(L+1)
0 t

(L)
2,j

))
for n2 �= N∑N

j=1

(
1
z

∑N−1
i=1 Ei,j l

(L+1)
i t

(L)
i+1,j + EN,j

(
l
(L+1)
N t

(L)
1,j + l

(L+1)
0 t

(L)
2,j

))
for n2 = N

then we find the correspondence

T(L+1)(z) =




Tm;n1−1,n2+1(z) for n1 �= 1, n2 �= N

Tm+1;N−1,n2+1(z) for n1 = 1, n2 �= N

Tm;N−1,1(z) for n1 = 1, n2 = N

Tm−1;n1−1,1(z) for n1 �= 1, n2 = N.

By induction, we obtain (2.16). �

Appendix B

Proof of proposition 4.1. Based on the periodicity L and the Poisson relations (4.5), we can
set candidates for the generators of A0

LV as

P(i)
k =

L
k
−1∏

n=0

(Vkn+i ) for k ∈ {1, . . . , N}, k|L and i ∈ {1, · · · , k}.

Our goal is to determine k. The condition for a variable P(i)
k to belong to A0

LV,{
Vn,P(i)

k

} = 0 for n ∈ Z/LZ

reduces to ∑
m∈Z/LZ,m=i mod k

N−1∑
l=1

(δm,n+l − δm,n−l ) = 0. (B.1)

Assume that we have 2j non-zero terms in the summation of (B.1) for j ∈ {1, . . . , N − 1},
where j of them offer +1 and the others offer −1. In the case of j = 1 we easily obtain k = N

if N |L is satisfied, and k = N − 1 if (N − 1)|L. In the case of j = N − 1 we have k = 1 for
all L. In the following, we study the cases of 2 � k � N − 2.

Without limiting the generality, we consider the n = 0 case in (B.1). Let m = n0 in (B.1)
be the left-most lattice point where the first −1 occurs for −(N − 1) � n0 � −N + k. In
j = 2 case, the condition for k (B.1) is reduced to

n0 + k < 0 and N − k � n0 + 3k � N − 1. (B.2)

This situation is depicted as

. . . . . . . . .

−(N − 1)

�
�

n0

�
�

n0 + k

0

�
�

n0 + 2k

�
�

n0 + 3k

N − 1
.

Here black circles mean where the non-zero terms are offered in (B.1). We have two critical
cases for n0:
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(i) when n0 = −(N − 1), (B.2) reduces to

2N − 1

4
� k � 2(N − 1)

3
. (B.3)

(ii) When n0 = −N + k, (B.2) becomes

2N

5
� k � 2N − 1

4
. (B.4)

Since 2N − 1
4 �∈ Z, (B.3) and (B.4) are not satisfied at the same time. When k satisfies (i),

we should relate this k to a condition

(i′) when n0 = −N + k, n0 + k = 0 is imposed

−(N − 1)

�
�

n0

0

�
�

n0 + k

�

N − 1
.

Then we obtain k = N
2 , which turns out to be the j = 1 case.

On the other hand, when k satisfies (ii), we relate it to
(ii′) when n0 = −(N − 1), n0 + 2k = 0 is required

�
�

n0

−(N − 1)

�
�

n0 + k

�
�

n0 + 2k

0

� �

N − 1
.

Therefore we obtain k = N−1
2 , which is a special case of j = 2.

The conditions (i) and (i′) do not contradict each other for N � 4, and so do not (ii) and
(ii′) for N � 5. Then we obtain k = N

2 (resp. N−1
2 ) if 2|N (resp. 2|(N − 1)).

In general j�3 cases, (B.1) reduces to

n0 + (j − 1)k < 0
N − n0

2j
� k � N − 1 − n0

2j − 1
. (B.5)

Then two critical cases are written as follows:

(i) when n0 = −(N − 1), (B.5) becomes

2N − 1

2j
� k � 2(N − 1)

2j − 1
.

And when n0 = −N + k, n0 + (j − 1)k = 0. Then we obtain k = N
j

for N � 2j and j |N .
(ii) When n0 = −N + k,

2N

2j + 1
� k � 2N − 1

2j
.

And when n0 = −(N − 1), n0 + jk = 0. Then we get k = N−1
j

for N � 2j + 1 and
j |(N − 1).

Finally we obtain the set K (4.7) k belongs to. �
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Appendix C

Proof of proposition 4.5. We show the first part of proposition 4.5 in more general setting.
Assume that TLV(z) has a form as

TLV(z) = µLV
0 zm + µLV

1 zm−1 + · · · + µLV
m .

Let all matrix elements of µLV
i belong to A′

LV. We relate TLV(z) to a matrix T(z) by the gauge
transformation

T(z) = BTLV(z)B−1.

Here the gauge matrix B is a diagonal matrix independent of z, whose entries belong to a
Poisson bracket algebra where A′

LV is embedded. Then the matrix T(z) has a similar form to
TLV(z),

T(z) = µ0z
m + µ1z

m−1 + · · · + µm

where µi = BµLV
i B−1. With these settings we have

Proposition 4.5′. Let AN be a Poisson bracket algebra generated by the entries of a matrix
N(z) related to T(z) by an invertible matrix S as

N(z) = ST(z)S−1 S =





eiµ
(1)


eiµ
(2)

...


eiµ
(N)


 .

Here each of µ(i) is a product of µj (j = 0, . . . , m). Then AN is embedded in A′
LV.

Proof. It is sufficient to show that the matrix elements of N(z) belong to C(P0, Vn; n ∈ Z/LZ).
Using B = diag[b1, b2, . . . , bN], the matrix µ(i) is rewritten as

µ(i) = Bµ(i)LVB−1

where µ(i)LV is the associated product of µLV
j . Therefore the gauge matrix S can be written as

S = biSLVB−1 SLV =





eiµ
(1)LV


eiµ
(2)LV

...


eiµ
(N)LV


 .

Then N(z) is obtained as

N(z) = biSLVB−1T(z)BS−1
LVb−1

i

= SLVTLV(z)S−1
LV .

Since all entries of SLV and TLV(z) belong to A′
LV, the proposition follows. �

When we apply this proposition to the case T(z) = Tm;n1,n2(z), the first part (i) follows.
Further, from (i) we see that the separation equation (2.22) can be written in terms of entries
in MF (z), then we obtain the second part (ii). �
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